
MICROSERVICES 2.0 & RHOAR

Cloudify your applications: Microservices and beyond

Ugo Landini
Solution Architect

Samuele Dell’Angelo
Solution Architect



“Most teams we work with favor bundling an embedded  
http server within your web application. There are 
plenty of options available: Jetty, SimpleWeb, Webbit 
and Owin Self-Host amongst others. Easier automation, 
easier deployment and a reduction in the amount of 
infrastructure you have to manage lead us to 
recommend embedded servers over application 
servers for future projects”

ThoughtWorks Technology Radar, May 2015

2015 AP Revenue (Gartner, Nov. 2016) :
● Oracle -4.5%
● IBM -9.5%
● Red Hat +33.3%
● Amazon +50.6%
● Pivotal +22.7%

“Resist the temptation to simply lift and shift Java EE 
applications from closed-source to open-source 
application servers for modest license savings. If you 
are contemplating porting an application, consider 
rearchitecting it to be cloud-native and moving it to 
aPaaS - presuming that business drivers warrant the 
investment.”

Gartner (November 2016)

State of the Market



MICROSERVICES 101



“... is an approach to developing a single application as a suite of small 
services, each running in its own process and communicating with 
lightweight mechanisms, often an HTTP resource API. These services are 
built around business capabilities and independently deployable by fully 
automated deployment machinery. There is a bare minimum of centralized 
management of these services, which may be written in different 
programming languages and use different data storage technologies.”

Martin Fowler
http://martinfowler.com/articles/microservices.html

Microservices defined



● Small single-purpose services driven from DDD (Domain Driven Design) or practical decomposition 
of an existing application or existing SOA-style mini-services

● Combined to form a system or application
● Independently deployable (replaceable)
● Independently scalable
● Antifragile - increased robustness and resilience under pressure
● Fully automated software delivery
● Polyglot (language and framework independence)
● API  / Contract Focused
● Typically event-driven
● Decentralized data management

Microservices 101



Microservices 101

MyService

Tracing

API

Discovery

Invocation

Resilience

Pipeline

Authentication

Logging Elasticity

Monitoring



Pod
Container

JVM

Service A

Pod
Container

JVM

Service B

Pod
Container

JVM

Service C

Microservices == Distributed Computing



Wait, but weren’t we already doing this 
distributed stuff...

● … what about CORBA?
● … and RMI?
● … EJB?
● … SOA?

What’s the difference?



Maturing the Application LifeCycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle



Maturing the Application LifeCycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle
Fast Moving Java EE Monolith



Maturing the Application LifeCycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle
Fast Moving Java EE Monolith
Java EE Microservices



What’s the difference?

● Same ideas, new technologies (which will evolve in the 
future)

● But now, we should be able to bring a new feature in 
production in a few minutes



The Good

● Domain-Driven Design
● Low coupling, high cohesion
● APIs and contracts
● Agile software development
● Full lifecycle automation
● Dev and Ops working together 
● Common packaging / container format
● Rethinking Data

Microservices: the Good, the Bad...



The Bad

● Too much Dogma / CS purity
● Tradeoff between Agility & Operational 

Complexity
● Magnificent Monoliths and Stupendous SOA 

are not necessarily bad
● Microservices  / Unicorn Envy 
● Not all organizations can afford the skills and 

talent required to be successful
● Maintaining data consistency is hard in 

distributed systems

Microservices: the Good, the Bad...



The Ugly
● Building large scale distributed systems is really 

hard
● Monitoring  / APM tools need to catch up
● Heterogeneity (languages, frameworks, data 

stores)
● Event-based, asynchronous, reactive programming 

is still in it’s infancy and skills are rare
● CAP: Consistency, Availability, Partition Tolerance 

? – choose two 

Microservices: the Good, the Bad...



● Understand and state your goals
● Understand the tradeoffs
● Start with People, Process and Culture

○ Agile Dev / DevOps is a prerequisite
● Invest in automation (provisioning, CI/CD, etc.)
● Start small 

○ Small non-mission-critical green-field
○ Decomposition of existing monolith

● Get help - eg. Red Hat Innovation Labs

Microservices Recommendations



Config Server

NETFLIX Ribbon

Java Microservices Platform (2014)



Why these components?
Eureka is the Service Registry where the clients 
lookup for service locations a.k.a Service Discovery

Config Server

Zuul is the smart proxy purely based on Java

Ribbon is the client side Load Balancer

Hystrix is the Circuit Breaker

Config Server externalized the Configuration

Zipkin is the Distributed Tracer



Why these components?
Eureka is the Service Registry where the clients 
lookup for service locations a.k.a Service Discovery

Config Server

Zuul is the smart proxy purely based on Java

Ribbon is the client side Load Balancer

Hystrix is the Circuit Breaker

Config Server externalized the Configuration

Zipkin is the Distributed Tracer

https://www.amazon.com/Release-Design-Deploy-Production-Ready-Software/dp/1680502395/ref=sr_1_1?ie=UTF8&qid=1504218021&sr=8-1&keywords=release+it


bit.ly/msa-instructions

2.0

http://bit.ly/msa-instructions


Config Server

NETFLIX Ribbon

Better Microservices Platform 
(2016/2017)



Config Server

NETFLIX Ribbon

Even Better Microservices Platform (2018)



Istio - Sail
(Kubernetes - Helmsman or ship’s pilot)

Istio



35

Sidecar?



Pod
Container

JVM

Service A

Side-car Container

Pod
Container

JVM

Service B

Side-car Container

Pod
Container

JVM

Service C

Side-car Container

Pods with 2 containers!



Infrastructure cluttering your code?
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-config</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zuul</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-hystrix</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>

</dependency>



Istio

Resilience Across 
Languages and Platforms

Increase reliability by shielding 
applications from flaky networks 
and cascading failures in adverse 
conditions.

Policy Enforcement

Apply organizational policy to 
the interaction between 
services, ensure access 
policies are enforced and 
resources are fairly 
distributed among 
consumers.

Intelligent Routing and 
Load Balancing

Control traffic between 
services with dynamic route 
configuration.

Conduct A/B tests, release 
canaries, and gradually 
upgrade versions using 
red/black deployments.

Telemetry and Reporting

Understand the dependencies 
between services, the nature and 
flow of traffic between them, and 
quickly identify issues with 
distributed tracing.



Istio Service Mesh 
Currently upstream only

Envoy

istio-ingress

Envoy

App A

Envoy

App B

Envoy

App  C

istio-pilot istio-mixer istio-auth

HTTP Req/Resp

Kubernetes Pods

Istio Components Config to Envoy Access Control and Telemetry



Istio Components

● Control Plane
○ Istio-Pilot - istioctl, API, config
○ Istio-Mixer - Quota, Telemetry, Rate Limiting, ACL
○ Istio-Auth - TLS and Certificates 

● Data Plane
○ Envoy proxy deployed as “side-cars” with applications



Circuit Breakers

Before Istio After Istio
Boiler plate code No code related to circuit breaking mixed with 

business logic

Multiple libraries and dependencies e.g. Hystrix No libraries

Separate dashboard to collect circuit breaker 
e.g. Hystrix Turbine

All metrics can be collected and displayed in Grafana 
without extra bit of code

Define circuit breakers using Kubernetes Tags



Tracing

Before Istio After Istio

Boiler plate code No code related to tracing mixed with business logic

Multiple libraries and dependencies e.g. Zipkin No libraries



All in one place



How to use it

Routes and commands injected via CLI or API:

apiVersion: config.istio.io/v1alpha2

kind: RouteRule

metadata:

  name: reviews-test-v2

spec:

  destination:

    name: reviews

  precedence: 2

  match:

    request:

      headers:

        cookie:

          regex: "^(.*?;)?(user=jason)(;.*)?$"

  route:

  - labels:

      version: v2



DEMO







Infrastructure

Circuit Breaker

Configuration
Service

Service 
Registry

Client-side Load
Balancing

Infrastructure Infrastructure

Supporting Services

Cache / 
DataGrid SSO Service

2014 2016 2018

Microservice Business Logic

Configuration
(ConfigMap)

Service 
Registry

API Mgmt Messaging
Server-Side

Load 
Balancing

Circuit Breaker

Istio+Cache / DataGrid SSO Service
API Mgmt Messaging

Service 
Registry

Configuration
(ConfigMap)

Server-Side
Load Balancing

Circuit 
Breaker

Cache / DataGrid SSO Service

API Mgmt Messaging

Smart RoutingDistributed
Tracing

Distributed 
Tracing

Distributed 
Tracing

Distrib.Tracing

Distributed 
Tracing

Microservice Business Logic Microservice Business Logic

Smart Routing

Smart Routing

Supporting Services

Supporting Services Service 
Registration

Container Platform
Services

Container Platform
Services

Com
m

odification
Simplification

Evolution of Microservices



Ok, but that’s all about MSA infrastructure...

OpenShift is the best Container Platform, it will solve for 
you many of the problems at an infrastructure level 
without cluttering your code but... 

… we still need to code our microservices!



50

Runtime

App

Cloud Platform

Data

Build | Deploy | Scheduling | Scaling | Elasticity | Metrics | Logging

Security IMDG Messaging

Runtime

Svc

Runtime

Svc

Cloud Provider

The App Server 2014/...



Funktion

50% OF THE 
ENTERPRISE APP 
MARKET

Where developers are going



“Almost all the successful 
microservice stories have started with 
a monolith that got too big and was 
broken up”

“Almost all the cases where I've heard 
of a system that was built as a 
microservice system from scratch, it 
has ended up in serious trouble.”

Martin Fowler: monolith first!



Modern, cloud-native application runtimes and an opinionated 
developer experience  for organizations that are moving 
beyond 3-tier architectures and embracing cloud-native 
application development.



● Multiple runtime options
○ JBoss EAP - existing Java EE / Spring apps.
○ WildFly Swarm / MicroProfile - Java EE centric MSA
○ Spring Boot / Cloud - Spring centric MSA
○ Vert.x - greenfield reactive Java
○ Node.js - greenfield reactive JavaScript

● OpenShift - Public, Dedicated Public & Enterprise
● Tightly integrated with OpenShift & Kubernetes
● Tightly Integrated with Red Hat Developer SaaS
● 3rd-party Integrations - eg. Netflix Ribbon, Hystrix, etc.
● Opinionated DevX starting with launch.openshift.io

RHOAR: OpenShift Application Runtimes



JBoss EAP
Existing, Java EE, 

Spring MVC

Fast Monoliths
(Java EE, Spring)

Tomcat
Spring Boot / 

MVC

Greenfield
Reactive Java

Java EE - mono to 
micro. / greenfield

Vert.x
Reactive Java 

/ Polyglot 
MSA 2.0

Node.js
Reactive 
client / 

server-side 
JavaScript

Greenfield
polymorphic 
JavaScript

FaaS / 
Server-le

ss

Existing Applications New Applications

Greenfield
Java / Spring

MSA

JBoss WS
Tomcat, 

Spring MVC, 
Spring Boot Spring 

Cloud
Java 

MSA 1.0WildFly 
Swarm
Monolith 

Decomposition, 
Enterprise Java 

MSA 2.0



Ok, so it’s (also) about being lighter?

Don’t believe it? Try it out yourself http://bit.ly/modern-java-runtimes

Runtime
(framework)

Boot time 
server only 

Boot time including app 
deployment 

Memory usage 
without load

Memory usage 
under load

Measured 

throughput

JBoss EAP (Java EE) 2 - 3 sec 3 sec 40 MB 200 - 400 MB 23K req/sec

JBoss EAP (Spring) 2 - 3 sec 7 sec 40 MB 500 - 700 MB 9K req/sec

JBoss WS/Tomcat (Spring) 0 - 1 sec 8 sec 40 MB 0.5 - 1.5 GB 8K req/sec

Fat JAR (Spring Boot) N/A 3 sec 30 MB 0.5 - 2.0 GB 11K req/sec

Fat JAR (WF Swarm) 1-2 sec 5 sec 30 MB 250 - 350 MB 27K req/sec

      Theoretically, yes. But, beware:
● A simple ReST service deployed in EAP used ⅕ of the memory used 

by Spring Boot under load and was 2x faster!



Ok, so it’s (also) about being lighter?

Don’t believe it? Try it out yourself http://bit.ly/modern-java-runtimes

Runtime
(framework)

Boot time 
server only 

Boot time including app 
deployment 

Memory usage 
without load

Memory usage 
under load

Measured 
throughput

JBoss EAP (Java EE) 2 - 3 sec 3 sec 40 MB 200 - 400 MB 23K req/sec

JBoss EAP (Spring) 2 - 3 sec 7 sec 40 MB 500 - 700 MB 9K req/sec

JBoss WS/Tomcat (Spring) 0 - 1 sec 8 sec 40 MB 0.5 - 1.5 GB 8K req/sec

Fat JAR (Spring Boot) N/A 3 sec 30 MB 0.5 - 2.0 GB 11K req/sec

Fat JAR (WF Swarm) 1-2 sec 5 sec 30 MB 250 - 350 MB 27K req/sec

      Theoretically, yes. But, beware:
● A simple ReST service deployed in EAP used ⅕ of the memory used 

by Spring Boot under load and was 2x faster!



Polyglot
● Language agnostic platform
● Initial focus on Java & JavaScript

Best in class OSS
● Container, Kubernetes, Java, JavaScript, Spring

Poly-architecture
● Fast monoliths (existing Java EE, Spring MVC)
● Mini and microservices
● Serverless (in the future)

Key Differentiators



● Resource efficiency 

● Automation for microservices, but also 
support traditional applications

● Enable faster and more consistent 
deployments from Development to 
Production

● Enable application portability across 4 
infrastructure footprints: Physical, 
Virtual, Private & Public Cloud

Key Differentiators



Multiple Runtimes supported in single SKU
Support 12-factor / cloud-native design-patterns :
● Healthcheck / load-balancing / proxying
● Registry / config.
● Rolling upgrades / retries / failover
● Separation of concerns

Cloud-scale design
● Networking, storage, auto-scaling, logs, alerting

Key Differentiators



The books you’ll need to read

https://www.amazon.com/Release-Design-Deploy-Production-Ready-Software/dp/1680502395/ref=sr_1_1?ie=UTF8&qid=1504218021&sr=8-1&keywords=release+it


RUNTIMES
(Container images and Maven Artifacts)

JAVA EE
(JBoss EAP)

MICROPROFILE
(WildFly Swarm)

OPENSHIFT SERVICES   

REACTIVE
(vert.x)

NODE.JS APACHE
TOMCAT

TESTED FRAMEWORKS
(Maven Artifacts)

SPRING BOOT / 
CLOUD

NETFLIX OSS
 Ribbon

OpenShift.io

(Developer
SaaS)

Generators

IDE

etc.

Management

APM

Metrics

Service
Discovery Config.

Logging

Health 
Check

Load 
Balancing

CI/CDSSOMessaging IMDG API Mgmt

NETFLIX OSS
Hystrix ...

RHOAR: OpenShift Application Runtimes



QUESTIONS?




